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Abstract Let F1 and F2 be independent copies of one-dimensional correlated fractal perco-
lation, with almost sure Hausdorff dimensions dimH(F1) and dimH(F2). Consider the follow-
ing question: does dimH(F1) + dimH(F2) > 1 imply that their algebraic difference F1 − F2

will contain an interval? The well known Palis conjecture states that ‘generically’ this should
be true. Recent work by Kuijvenhoven and the first author (Dekking and Kuijvenhoven in
J. Eur. Math. Soc., to appear) on random Cantor sets cannot answer this question as their
condition on the joint survival distributions of the generating process is not satisfied by
correlated fractal percolation. We develop a new condition which permits us to solve the
problem, and we prove that the condition of Dekking and Kuijvenhoven (J. Eur. Math. Soc.,
to appear) implies our condition. Independently of this we give a solution to the critical
case, yielding that a strong version of the Palis conjecture holds for fractal percolation and
correlated fractal percolation: the algebraic difference contains an interval almost surely if
and only if the sum of the Hausdorff dimensions of the random Cantor sets exceeds one.

Keywords Palis conjecture · Algebraic difference · Cantor sets · Correlated fractal
percolation · Branching processes · Criticality

1 Introduction

In this paper we consider a natural class (called correlated fractal percolation) of random
Cantor sets with dependence, as opposed to the independent case, which is know as fractal
percolation or Mandelbrot percolation. Two and three dimensional versions of both types
of sets have occurred before in the literature, especially as a modeling tool, see e.g., [6],
where the dependent case is called the ‘homogeneous algorithm’, and the independent case
the ‘heterogeneous algorithm’ (see Fig. 1 left, respectively right for an illustration of these
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Fig. 1 Left: Two-dimensional 7 out of 9 correlated fractal percolation with μ(∅) = 0. Middle: Two-di-
mensional 8 out of 9 correlated fractal percolation with μ(∅) = 1

8 . Right: Ordinary two-dimensional fractal
percolation with p = 7/9

two processes by two realizations). In [3] they are called ‘constrained curdling’, respectively
‘canonical curdling’. All this work has its roots in the seminal paper [4].

Our main goal is to answer the question whether or not an interval occurs in the algebraic
difference of two independent random Cantor sets from the correlated fractal percolation
class. A complete answer is given in Theorem 3 in Sect. 5.

We also call correlated fractal percolation m out of M percolation (cf. Sect. 2.2), where
m is an integer with 1 ≤ m ≤ M . It will appear that the transition from no interval to interval
lies at values of m ≈ √

M . The combinatorial Lemma 6 lies at the basis for a solution of all
cases, except the case m = √

M + 1, which is a tough nut to crack (Lemma 7).
The key idea to obtain these results is that we introduce a new condition on the survival

distributions, which improves on the condition given in [2]. As a bonus, this gives a more
general and more simple proof of the basic theorem (Theorem 2). It is more simple since we
do not need the combinatorial ‘color lemma’ of [1] and [2], nor the irreducibility condition
of [2].

2 Differences of Random Cantor Sets

Here we will introduce M-adic random Cantor sets and their differences, and the main
result (Theorem 1) from [2] regarding the Palis conjecture, with a rough sketch of the proof.
Finally we describe higher order Cantor sets which are particularly useful to obtain a more
complete characterization from Theorem 1.

2.1 M-adic Random Cantor Sets

An M-adic random Cantor set F is constructed using the following mechanism: take the
unit interval and divide it into M subintervals of equal length. Each of those subintervals
corresponds to a letter in the alphabet A = {0, . . . ,M − 1}. It will be convenient to consider
A as an Abelian group with addition. So for instance if M = 6 we have 5+3 = 2. Now define
a joint survival measure μ on 22A

. It is determined by its values (μ(A)) on the singletons
A ⊂ A. According to this distribution we choose which subintervals are kept and which
are discarded. Then in each next construction step, each of the surviving subintervals is
again divided in M subintervals of equal length, of which a subset survives according to the
distribution μ.

More formally, we consider the space of {0,1}-labeled M-adic trees {0,1}T , where we
label each node i1 . . . in ∈ T with Xi1...in ∈ {0,1}.



Correlated Fractal Percolation and the Palis Conjecture 309

The probability measure Pμ on this space is defined by requiring that Pμ (X∅ = 1) = 1
(where ∅ is the root of T ), and that for all i1 . . . in ∈ T the random sets

{in+1 ∈ A : Xi1...inin+1 = 1}

are independent and identically distributed according to μ. We let Tn denote the set of nodes
at level n, and for any in = i1 . . . in from Tn we define the associated M-adic interval by

Ii1...in :=
[

i1

M
+ · · · + in−1

Mn−1
+ in

Mn
,

i1

M
+ · · · + in−1

Mn−1
+ in + 1

Mn

]
.

The n-th level approximation Fn of the random Cantor set is a union of such n-th level
M-adic intervals selected by the sets Sn defined by

Sn = {i1 . . . in : Xi1 = Xi1i2 = · · · = Xi1...in = 1}.

The random Cantor set F is

F =
∞⋂

n=1

Fn =
∞⋂

n=1

⋃
i1...in∈Sn

Ii1...in .

The marginal probabilities pi of μ are defined for i ∈ A by

pi :=
∑

X⊆A:i∈X

μ(X). (1)

We start with the definition of the class of random Cantor sets which we will take into
consideration.

2.2 Correlated Fractal Percolation

From now on we will consider one-dimensional fractal percolation.

Definition 1 Suppose μ assigns the same positive probability to all subsets of A with m

elements for some fixed integer 1 ≤ m ≤ M , and that μ assigns probability zero to all other
non-empty subsets of A. If p := (1 − μ(∅)) m

M
then we call this (m,M,p)-percolation.

We can compute the marginal probabilities of (m,M,p)-percolation as follows. Let X

be a subset of A, chosen according to the joint survival distribution μ. The probability that
X is non-empty is 1 − μ(∅). Given that X is non-empty, the probability that a fixed k ∈ A

belongs to X equals m/M . It follows that for k ∈ A the marginal probability pk is given by

pk = (1 − μ(∅))
m

M
= p,

which is exactly the reason why we defined (m,M,p)-percolation by requiring that p =
(1 − μ(∅))m/M . Because 0 ≤ μ(∅) ≤ 1, (m,M,p)-percolation is only defined for 0 ≤
p ≤ m

M
. From now on we will assume that p > 0 and m > 0, since giving the empty set

probability one does not yield the most exciting situation.
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2.3 Algebraic Differences of Sets

The algebraic difference F1 − F2 of the sets F1 and F2 is defined by

F1 − F2 = {x − y : x ∈ F1, y ∈ F2}.

The well known Palis conjecture [5] states that ‘generically’ dimH(F1) + dimH(F2) > 1
should imply that the algebraic difference F1 − F2 will contain an interval.

This question is considered in [1] and [2] for two M-adic random Cantor sets F1 and F2

with the same M but not necessarily the same joint survival distribution.
One can distinguish between joint survival distributions selecting intervals independently

and joint survival distributions not having this property. In the independent case, the problem
is somewhat less complicated, but still far from trivial. Intervals are selected and discarded
independently if and only if the joint survival distribution satisfies for all X ⊆ A the equality

μ(X) =
∏
i∈X

pi

∏
i 
∈X

(1 − pi). (2)

An important role in the answer to the main question is played by the cyclic cross-correlation
coefficients (mostly simply called correlation coefficients)

γk :=
M−1∑
i=0

qipi+k, for k ∈ A,

where (pi) and (qi) are the vectors of marginal probabilities of the joint survival distribu-
tions μ, respectively λ.

The result of [2] needs the following condition (which is satisfied in the independent case
of (2)).

Condition 1 A joint survival distribution (μ(A))A⊆A satisfies the joint survival condition
(JSC) if it assigns positive probability to the marginal support Suppm(μ) of μ, which is
defined by

Suppm(μ) :=
⋃

{X ⊆ A : μ(X) > 0} = {i ∈ A : pi > 0}.

The following result of [2] generalizes the main theorem of [1].

Theorem 1 Consider two independent random Cantor sets F1 and F2 whose joint survival
distributions μ and λ both satisfy Condition 1, the JSC.

(1) If γk > 1 for all k ∈ A, then F1 − F2 contains an interval a.s. on {F1 − F2 
= ∅}.
(2) If γk < 1, γk+1 < 1 for some k ∈ A, then F1 − F2 contains no interval a.s.

Obviously for (m,M,p)-percolation the JSC is not satisfied, unless we are in the case
m = M , giving positive probability only to the full alphabet and the empty set (actually, this
is ordinary fractal percolation, where intervals are discarded independently and the marginal
probabilities pk are all equal to p).
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2.4 The Geometry of the Algebraic Difference

We will give in this subsection the tools and the notation introduced in [1] and [2].
Let φ : [0,1]2 → [−1,1] be given by φ(x, y) = y − x, then F1 −F2 = φ(F1 ×F2). Thus

F1 − F2 is defined on the product space of the probability spaces of F1 and F2. We will use
P := Pμ × Pλ to denote the corresponding product measure and E to denote expectations
with respect to this probability.

Let F1 and F2 be two independent M-adic random Cantor sets with joint survival distri-
butions μ and λ, respectively. Denote by Fn

1 and Fn
2 their nth level approximations (n ≥ 0)

and define the following subsets of the unit square [0,1]2:

�n := Fn
1 × Fn

2 , n ≥ 0, � := F1 × F2 =
∞⋂

n=0

�n.

Note that as Fn
1 ↓ F1 and Fn

2 ↓ F2, also �n ↓ �.
The �n are unions of M-adic squares

Qi1...in,j1...jn := Ii1...in × Ij1...jn ,

with i1 . . . in, j1 . . . jn ∈ Tn and n ≥ 0.
Note that φ acts as a 45° projection on the x-axis. Similarly to [1] and [2] we scale

and rotate the unit square over 45° counterclockwise, to rather see it as a 90° projection on
[−1,1]. See Fig. 2 for a graphical representation of some of the squares Q and their φ-
images. Here we denote the M-adic intervals Ii1...in in [0,1] by IR

i1...in
(they are projections

of squares in the right side of the tilted square), and define

IL
i1...in

= IR
i1...in

− 1,

for the M-adic intervals Ii1...in in [−1,0] (they come from the left side). The columns CU
k1...kn

,
where U = L or U = R are defined for each k1 . . . kn ∈ T by

CU
k1...kn

:= φ−1
(
IU
k1...kn

)
.

Note that any nth level M-adic square Qi1...in,j1...jn is split into a ‘left’ and a ‘right’ triangle
by the M-adic columns. These triangles are called L-triangles and R-triangles, and will be
denoted by Li1...in,j1...jn and Ri1...in,j1...jn respectively, for any i1 . . . in, j1 . . . jn ∈ T .

For all U,V ∈ {L,R} and kn ∈ T we let

ZUV (kn) := #
{
(in, jn

) : Qin,j
n
⊆ �n,Vin,j

n
⊆ CU

kn

}

denote the number of level n V -triangles in �n ∩ CU
kn

. We also denote the total number of

V -triangles in columns CL
kn

and CR
kn

together by

ZV (kn) := ZLV (kn) + ZRV (kn),

for all kn ∈ T . For example, in Fig. 2 we have ZR(01) = 1 + 2 = 3.
An important observation is that an M-adic interval IU

kn
is absent in φ(�n) exactly when

there are no triangles in the corresponding column CU
kn

in �n:

IU
kn


⊆ φ(�n) ⇐⇒ ZUL(kn) = ZUR(kn) = 0.
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Fig. 2 An illustration for M = 3 of the unit square [0,1]2, scaled and rotated by 45°. The shaded squares
form a realization of �2 for 2 out of 3 fractal percolation. The vertical projection gives the φ-image [−1, 5/9]
of �2

The triangle counts ZUV (kn), with k1, k2, . . . , a fixed path, constitute a two type branch-
ing process in a varying environment with interaction: the interaction comes from the de-
pendency between triangles that are aligned, i.e., triangles contained in respective squares
Qi1...in,j1...jn and Qi′1...i′n,j ′

1...j ′
n

with i1 . . . in = i ′
1 . . . i ′

n or j1 . . . jn = j ′
1 . . . j ′

n. Squares that are
not aligned will be called unaligned.

The expectation matrices of the two type branching process are for kn ∈ T given by:

M
(
kn

) :=
[

EZLL(kn) EZLR(kn)

EZRL(kn) EZRR(kn)

]
. (3)

These matrices satisfy the basic relation
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M (k1 . . . kn) = M (k1) · · · M (kn) , (4)

for all k1 . . . kn ∈ T .
Lemma 1 shows the importance of the correlation coefficients.

Lemma 1 [1] For all k ∈ A we have

[1 1]M (k) = [EZL(k) EZR(k)] = [γk+1γk]. (5)

Proof As in [1] this follows from some careful bookkeeping and

P(Qi,j ⊆ �1) = P
(
Ii ⊆ F 1

1 , Ij ⊆ F 1
2

) = Pμ

(
Ii ⊆ F 1

1

)
Pλ

(
Ij ⊆ F 1

2

) = piqj .

�

2.5 Rough Sketch of the Proof of Theorem 1

The idea of the proof is to pair unaligned left and right triangles that survive in the same
column into what are called �-pairs.

Suppose we have a �-pair in one of the columns with positive probability. If we can prove
that there is a strictly positive probability that the number of L-triangles and R-triangles in
all subcolumns of this column grows exponentially, then it can be shown that with positive
probability the M-adic interval corresponding to this column is in the projection φ(�). The
determining quantity for exponential growth is the smallest correlation coefficient

γ := min
k∈A

γk. (6)

Now we make use of the fact that conditioned on � 
= ∅ the Hausdorff dimension of � is
almost surely larger than 1, which is implied by γ > 1.

It can be shown (see [1]) that from this it follows that the number of unaligned squares
grows to infinity. By self-similarity of the process each of the unaligned squares has positive
probability to generate an interval in the projection, and hence with probability one there
will be an interval in the projection.

To show that a �-pair occurs somewhere with positive probability it suffices that γ > 1.
So the joint survival condition is only needed to ensure positive probability of exponential
growth in all subcolumns of a �-pair. For any level l �-pair (Ll,Rl) that is contained in
a level l column C, the distribution of the number of level l + n V -triangles surviving in
�l+n in the kn-th subcolumn of (Ll,Rl), conditional on the survival of (Ll,Rl) in �l , is
independent of l, the particular choice of the column C and the �-pair in this column.
Therefore, we can unambiguously denote a random variable having this distribution by

Z̃V (kn) (7)

for all V ∈ {L,R} and kn ∈ T . In general Z̃V (kn) does not have the distribution of ZV (kn)

because there is possible dependence between the offspring generation of two level 0 trian-
gles, whereas there is no dependence between the offspring generation of the L-triangle and
the R-triangle of a �-pair, because they are unaligned by definition of a �-pair. However,
both do have the same expected value.

In [2] the following lemma on exponential growth of triangles is proved:
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Lemma 2 If γ > 1, and the joint survival distributions satisfy the joint survival condition,
then for all n ≥ 0

P(Z̃L(kl) ≥ γ l, Z̃R(kl) ≥ γ l for all kl ∈ Tl for all 0 ≤ l ≤ n) > 0.

In Lemma 4 in Sect. 4 we obtain this lemma (with a different growth factor) under weaker
conditions than the joint survival condition.

2.6 Higher Order Cantor Sets

The idea of higher order Cantor sets is to collapse n construction steps into one step. Since
�n ↓ � we can for all n ≥ 1 write

� =
∞⋂

m=1

�m =
∞⋂

m=1

�nm.

The sets (�nm)∞
m=1 are constructed by joint survival distributions which will be denoted by

μ(n) and λ(n). If Theorem 2 fails to answer the interval or not question for the pair (μ,λ),
one can hope to get an answer by considering � as generated by (μ(n), λ(n)).

The success of this idea is illustrated by Theorem 6.1 in [2], and by Theorem 4. We will
also use it for the proof of Lemma 7.

All entities of the nth order random Cantor set will be denoted with a superscript (n).
The alphabet now is A

(n) = {0, . . . ,Mn − 1} and μ(n) and λ(n) are probability measures on
the subsets of A

(n) which are completely determined by μ and λ.
Let us illustrate this with a simple example. Let M = 2 and define μ by μ({0,1}) =

μ({1}) = 1/2. For the corresponding second order Cantor set we have A
(2) = {0,1,2,3} and

μ(2)({0,1,2,3}) = μ(2)({1,2,3}) = μ(2)({0,1,3}) = μ(2)({1,3}) = 1

8
,

μ(2)({2,3}) = μ(2)({3}) = 1

4
.

3 The Critical Case

What happens in the critical case when γ = 1? This was left open in [1] and [2]. Here we
will give a simple argument, independent of the other results in this paper, that under some
conditions shows that there is almost surely no interval in the difference set. In particular
this result permits us to give a complete classification in Theorem 3. We also can tell what
happens for critical classical fractal percolation: if p = 1/

√
M , then there is almost surely

no interval in the difference set.

Definition 2 The joint survival distributions μ and λ are called entangled if for sets
X,Y ⊆ A the inequality μ(X)λ(Y ) > 0 implies that X ∩ Y 
= ∅.

Proposition 1 Consider two independent random Cantor sets F1 and F2 with joint survival
distributions μ and λ having marginal probabilities (pi) and (qj ), such that γ0 ≤ 1. Then
F1 − F2 contains no interval a.s., provided that μ and λ are not entangled.
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Proof Let Zn be the number of ‘central’ squares in �n, i.e.,

Zn = #{i1 . . . in ∈ T : Qi1...in,i1...in ∈ �n}.

Then Z0 = 1, and since these central squares are unaligned, (Zn) is an ordinary branching
process with mean offspring

E[Z1] = p0q0 + p1q1 + · · · + pM−1qM−1 = γ0 ≤ 1.

Now if γ0 = 1, then the offspring distribution is deterministic (Z1 ≡ 1) if and only if μ

and λ are entangled (P(Z1 > 0) ≥ μ(X)λ(Y ) > 0 if X and Y are sets with X ∩ Y = ∅ and
μ(X)λ(Y ) > 0). Hence, (Zn) will die out a.s., say at time N . In the sequel we will write the
string i1 . . . in = (k, k, . . . , k) for k ∈ A as kn.

Then, because there are no central squares left, CR

0N+n only contains left triangles for all
n ≥ 0. Moreover, the number of left triangles in (CR

0N+n ) is an ordinary branching process
(Y R

n ) with random initial distribution Y R
0 , and mean offspring

E
[
Y R

1

] = p0qM−1 ≤ 1.

Similarly, CL

(M−1)N+n only contains right triangles for all n ≥ 0. Moreover, the number of

right triangles in (CL

(M−1)N+n ) is a branching process (Y L
n ) with Y L

0 , and mean offspring

E
[
Y L

1

] = pM−1q0 ≤ 1.

If both E[Y R
1 ] and E[Y L

1 ] would equal 1, then p0qM−1 = pM−1q0 = 1 and consequently
p0q0 = pM−1qM−1 = 1 implying that γ0 ≥ 2. Hence either E[Y R

1 ] < 1 or E[Y L
1 ] < 1, such

that at least one of the two branching processes (Y R
n ) and (Y L

n ) will die out almost surely,
implying that F1 −F2 has a ‘gap’ directly left or right of 0. It then follows from selfsimilarity
and the denseness of the points k1M

−1 + · · · + knM
−n that F1 − F2 contains no interval a.s.

(cf. [1]). �

That we need at least some restriction on the joint survival distributions in addition to
the requirement γ0 ≤ 1 is shown in the following example: Let M = 2 and define the joint
survival distributions μ and λ by setting μ({0}) = μ({1}) = 1/2 and λ({0,1}) = 1. Then
γ = γ0 = 1, and there is an interval of length 1 in the difference set at a random position.
Proposition 1 does not apply since μ and λ are entangled.

4 The Distributed Growth Condition

In this section we introduce a condition for exponential growth of triangles which is based
on the following idea: if we can find a column C where we have a sufficient number of �-
pairs, then under some conditions each of these �-pairs can be used to guarantee exponential
growth of triangles in a proper subset of the set of subcolumns of C. In some sense we
‘spread the burden of proof’, and this gives the condition a flexible nature. This is illustrated
by the fact that with help of this condition, we can completely classify correlated fractal
percolation.
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For X,Y ⊆ A and e ∈ A we define γe(X,Y ) to be the eth correlation coefficient corre-
sponding to the joint survival distributions μ� and λ� assigning probability one to X and Y

respectively, i.e.,

γe(X,Y ) =
∑
i∈A

1Y (i)1X(i + e). (8)

Condition 2 The pair of joint survival distributions (μ,λ) satisfies the distributed growth
condition if for all k ∈ A we can find sets Xk,Yk ⊆ A such that

(DG0) μ(Xk) > 0 and λ(Yk) > 0,
(DG1) mine∈A γe(Xk,Yk) ≥ 1,
(DG2) γk(Xk,Yk) ≥ 2, γk+1(Xk,Yk) ≥ 2.

Lemma 3 Let E denote the event that there exists l ≥ 1, kl ∈ Tl and U ∈ {L,R} such that
CU

kl
contains at least M left and M right triangles which are all pairwise unaligned. If the

pair of joint survival distributions (μ,λ) satisfies the DGC, then

P(E) > 0.

Proof Choose X0, Y0 ⊆ A according to the DGC. Define the joint survival distributions μ�

and λ� by μ�(X0) = λ�(Y0) = 1. Then by (DG2) both column sums of the expectation matrix
M�(0) are at least 2, implying that

[1 1]M�(0n) ≥ [2n 2n],

elementwise. The first row of M�(0n) corresponds to CL
0n , which can contain at most one

left triangle and no right triangles. Therefore, both numbers in the second row of M�(0n)

are bounded below by 2n − 1. It follows that the numbers of left and right triangles in CR
0n

grow arbitrary large if n is sufficiently large. Since μ and λ assign positive probability to X0

and Y0 respectively, the statement of the lemma follows. �

We can now formulate our exponential growth lemma.

Lemma 4 If the pair of joint survival distributions (μ,λ) satisfies the distributed growth
condition, then there exist l ≥ 1, kl ∈ Tl and η > 1 such that for all n ≥ 0

P(ZL(klkp) ≥ ηp,ZR(klkp) ≥ ηp for all kp ∈ Tp for all 0 ≤ p ≤ n) > 0.

Proof Choose n ≥ 0 arbitrary. For all k ∈ A choose Xk ⊆ A and Yk ⊆ A such that these
sets satisfy the DGC. Define the joint survival distributions μ�

k and λ�
k by requiring that

μ�
k(Xk) = λ�

k(Yk) = 1.
Let k ∈ A be fixed and consider the expectation matrices corresponding to the triangle

growth process defined by (μ�
k ,λ�

k). By (5), their column sums are given by the correla-
tion coefficients corresponding to the pair of joint survival distributions (μ�

k, λ
�
k). So, for all

e ∈ A, both column sums of M�
k(e) are at least 1 and both column sums of M�

k(k) are at
least 2. Let p be an integer with 0 ≤ p ≤ n. Since for kp = k1 . . . kp ∈ Tp we have

M�
k(kp) = M�

k(k1) . . . M�
k(kp),
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it follows that a lower bound for the column sums of M�
k(kp) is determined by the number

of k’s in the string kp . We obtain (omitting the dependence on k, and writing kj for the j th
element in the string kp)

γ �
kp

≥ 2#{0≤j≤p:kj =k}, γ �
kp+1 ≥ 2#{0≤j≤p:kj =k}.

From the deterministic nature of μ�
k and λ�

k , it follows that the expectation of the number
of triangles in some column is simply the number that will occur. This means that for all
0 ≤ p ≤ n

Z
L;�
k (kp) = E

[
Z

L;�
k (kp)

] = γ �
kp+1 ≥ 2#{0≤j≤p:kj =k},

Z
R;�
k (kp) = E

[
Z

R;�
k (kp)

] = γ �
kp

≥ 2#{0≤j≤p:kj =k}.

Since (μ,λ) satisfies the DGC, we can by Lemma 3 find an l-adic column CU
kl

containing
with strictly positive probability at least M left- and M right triangles being all pairwise
unaligned. Let this event be denoted by E and abbreviate the notation of this column by C

and its subcolumns CU
klkp

by Ckp
.

Now suppose we have a �-pair (L,R) in C, in which the growth process behaves ac-
cording to the pair of joint survival distributions (μ�

k, λ
�
k). Then, for all p and all subcolumns

Ckp
of C, both the number of left and the number of right triangles in Ckp

∩ (L ∪ R) is at

least 2#{0≤j≤p:kj =k}.
Conditional on the event E, we have M left and right triangles in C. We can label them

by the elements of A such that we have M �-pairs. These 2M triangles are all pairwise
unaligned (also if they belong to different �-pairs) and hence there is completely no depen-
dence between these triangles. It follows that it is possible that in each of the �-pairs the
growth process takes place as prescribed by μ�

k and λ�
k , where k is the label of the �-pair.

Denoting the event that this happens in the first n construction steps after occurrence of E

by En, we can find a strictly positive lower bound for P(En|E):

P(En|E) ≥
∏
k∈A

μ(Xk)
∑n

j=1(#Xk)j−1
λ(Yk)

∑n
j=1(#Yk)j−1

> 0.

Let 0 ≤ p ≤ n and let Ckp
be an arbitrary Mp-adic subcolumn of C. There must exist a

k = k(kp) ∈ A such that #{0 ≤ j ≤ p : kj = k} ≥ � p

M
�. Hence, given the event En, for the

numbers of left and right triangles in Ckp
we have

ZL(klkp) ≥ 2� p
M

�, ZR(klkp) ≥ 2� p
M

�.

Taking η = M
√

2, we obtain

P(ZL(klkp) ≥ ηp,ZR(klkp) ≥ ηp for all kp ∈ Tp for all 0 ≤ p ≤ n)

≥ P(E)P(En|E) > 0. �

Collecting the results established so far, we can replace the joint survival condition (Con-
dition 1) and Lemma 2 by the distributed growth condition and Lemma 4 to obtain the
following useful variation on Theorem 1:
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Theorem 2 Consider two independent random Cantor sets F1 and F2 whose joint survival
distributions satisfy Condition 2, the DGC.

(1) If γk > 1 for all k ∈ A, then F1 − F2 contains an interval a.s. on {F1 − F2 
= ∅}.
(2) If γk < 1, γk+1 < 1 for some k ∈ A, then F1 − F2 contains no interval a.s.

This result is useful since it can be successfully applied to the class of correlated fractal
percolation, whilst the JSC is never satisfied for the members of this class. Actually our new
condition can always supersede the JSC.

Lemma 5 Suppose that the joint survival distributions μ and λ satisfy the JSC. If γk > 1
for all k ∈ A, then the pair (μ,λ) satisfies the DGC.

Proof We take for the sets Xk and Yk in (8) the marginal supports of μ and λ. Then the JSC
implies that (DG0) holds. Since qi = 0 if i 
∈ Suppm(λ), and similarly for pi , we have for all
e ∈ A

γe(Suppm(μ),Suppm(λ)) =
∑
i∈A

1Suppm(λ)(i)1Suppm(μ)(i + e)

≥
∑
i∈A

qipi+e = γe ≥ 2,

since the number on the left hand side is an integer larger than 1. Therefore Xk and Yk

certainly satisfy (DG1) and (DG2) for all k ∈ A. Thus (μ,λ) satisfies the DGC. �

5 Classifying Correlated Fractal Percolation

With the distributed growth condition at our disposal we can make an attempt to solve the
Palis problem for correlated fractal percolation. To facilitate our search for sets satisfying
the DGC, we introduce an alternative notation for subsets of the alphabet. A subset S of the
alphabet A can be represented as a string of length M with at the ith position a zero or a
one, indicating whether or not i is contained in S. For (m,M,p)-percolation, all subsets of
A to which is assigned positive probability correspond to a string consisting of m ones and
M − m zeros, where any order of the symbols is allowed. Next we need the notion of the
cyclic shift operator σ . For any string X = x0x1 . . . xM−2xM−1 we define

σ(X) = x1x2 · · ·xM−1x0. (9)

For the kth iterate of σ we use the notation σ k and for its inverse σ−k . Computing γk(X,Y )

can be done by writing down the two binary strings corresponding to σ k(X) and Y , and then
counting in how many positions both strings have a one (this will be called a coincidence).
This procedure is illustrated in (10) for M = 9, k = 4 and the sets X = {3,5,7,8} and
Y = {0,1,6,7}, where we abuse notation by also writing X for the indicator string of X,
and similarly for Y (this will never cause confusion).

X : 0 0 0 1 0 1 0 1 1

σ 4(X) : 0 1 0 1 1 0 0 0 1
Y : 1 1 0 0 0 0 1 1 0

(10)
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As we see, there is one coincidence, so γ4(X,Y ) = 1. Checking the DGC boils down to
finding binary strings with the right properties as given in (DG0), (DG1) and (DG2).

Let X and Y be two subsets of the M-adic alphabet A containing m elements in order to
satisfy (DG0). Our strategy is to choose X such that we get a binary string with all ones at the
beginning and Y such that the ones are distributed evenly over the string in such a way that
at most m − 1 consecutive zeros occur. This pattern will lead to fulfillment of requirement
(DG1). If we have sufficient freedom to choose Y within this framework, then we will also
succeed in letting (DG2) be satisfied. The details of this strategy are filled in the proof of the
lemma below.

Lemma 6 For (m,M,p)-percolation the following two assertions hold:

(1) If m <
√

M or p < 1√
M

, then F1 − F2 contains no interval a.s.1

(2) If m ≥ √
M + 2 and p > 1√

M
, then F1 − F2 contains an interval a.s. on {F1 − F2 
= ∅}.

Proof Suppose that p < 1√
M

, then for all k ∈ A we have

γk = Mp2 < M

(
1√
M

)2

= 1,

and consequently F1 − F2 contains no interval a.s. by Theorem 2. If m <
√

M , then p =
(1−μ(∅)) m

M
< 1√

M
and consequently the same argument is applicable, completing the proof

of the first part of Lemma 6.
For the proof of the second assertion, assume that m ≥ √

M + 2 and define X,Y ′ ⊆ A by
their strings

X = 1m 0M−m,

Y ′ = R[1 0m−1]q ,
where q = �M/m�, R is a left substring of 1 0m−2 (R is empty when m divides M), and
[1 0m−1]q denotes the string 1 0m−1, q times repeated. Ignoring the trivial case M = m = 2
we obtain from m ≥ √

M + 2 that we may assume m ≥ 3.
Since Y ′ does not contain m consecutive zeros (also cyclically), whereas X begins with

m consecutive 1’s, we must have

γe(X,Y ′) ≥ 1 for e = 0,1, . . . ,M − 1.

So X and Y ′ satisfy (DG1). The set X contains m elements, which means that μ(X) > 0.
Note that q = �M/m� can not exceed m − 1, since that would imply m ≤ √

M .

Case 1: q ≤ m − 2 or R is empty.
Then Y ′ contains at most m − 1 ones. In order to obtain (DG2), we construct Y ′′ from Y ′
by putting a one in the second position (if there is a zero)—note that X and Y ′′ will then
certainly still satisfy (DG1). Moreover, we now have

γ0(X,Y ′′) ≥ 2, γ1(X,Y ′′) ≥ 2,

1Actually, m <
√

M implies that p < 1/
√

M . Hence the statement “If p < 1/
√

M , then F1 − F2 contains
no interval a.s.” is equivalent to the first assertion of Lemma 6. We formulated the lemma in this way to
emphasize what the bounds on m are.



320 M. Dekking, H. Don

since m ≥ 3. Finally Y is obtained by adding 1’s to Y ′′ (if necessary) till Y contains m

ones—and thus μ(Y ) > 0. As an illustration for M = 7 and m = 4, X is given by 1111000
and (writing γk(·) for γk(X, ·)):

· String μ(·) > 0 γe(·) ≥ 1 ∀e ∈ A γ0(·),γ1(·) ≥ 2

Y ′ 1001000 No Yes No
Y ′′ 1101000 No Yes Yes
Y 1111000 Yes Yes Yes

Now we have found X0 := X and Y0 := Y satisfying (DG0), (DG1) and (DG2) for k = 0.
By observing that

γk(X,σ kY ) = γ0(X,Y ); γk+1(X,σ kY ) = γ1(X,Y ), (11)

it follows that the DGC holds for any k ∈ A if we take Xk = X en Yk = σ kY .

Case 2: q = m − 1 and R 
= ∅.
Since m ≥ √

M + 2, we have (with r the length of R)

M = m2 − m + r ≥ M + 2 − m + r,

so r ≤ m − 2, implying that R does not contain more than m − 3 zero’s. This gives that
γ0(X,Y ) ≥ 2 and γ1(X,Y ) ≥ 2. Now again we can take Xk = X en Yk = σ kY . Summarizing,
for all cases of correlated fractal percolation in part (2) we have shown that (DG0), (DG1)
and (DG2) hold. We conclude that the DGC is satisfied.

Moreover, for all k ∈ A we find

γk =
M−1∑
j=0

pjpj+k = Mp2 > M

(
1√
M

)2

= 1,

and therefore, by Theorem 2, F1 − F2 contains an interval a.s. on {F1 − F2 
= ∅}. �

Lemma 6 still gives no conclusive answer for some combinations of m and M when
p > 1/

√
M , namely, those where m = √

M + 1. By having a look at the 2nd order sets for
(m,M,p)-percolation this can be resolved.

Lemma 7 Consider (m,M,p)-percolation. If p > 1√
M

and

m = √
M + 1, (12)

then F1 − F2 contains an interval a.s. on {F1 − F2 
= ∅}.

Proof First we have a look at the shape of the binary strings corresponding to 2nd order sets
to which is assigned positive probability by the 2nd order joint survival distribution μ(2) of
correlated fractal (m,M,p)-percolation. Such a string has length M2. It should be regarded
as consisting of M blocks of length M . Each of these blocks contains either exclusively
zeros, or it contains M − m zeros and m ones. Blocks of the latter kind occur exactly m

times. Positions in the binary string can be identified with numbers in A
(2): an M2-adic
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number represented by k2 = k1k2 corresponds to the (k2 + 1)th position in the (k1 + 1)th
block.

Note that (12) implies that M − m(m − 1) = m − 1 and �M/m� = m − 1. This means
that the two strings X and Y ′ defined in the proof of Lemma 6 are now equal to (we omit
from now on the prime on Y )

X = 1m 0M−m,

Y = [1 0m−2] [1 0m−1]m−1.

The basic idea of the proof is to replace the 0’s in these two strings by blocks 0M , and the 1’s
by blocks similar to X or Y to obtain for all k2 ∈ A

(2) the order 2 strings X
(2)
k2

and Y
(2)
k2

which
will satisfy (DG1) and (DG2)—note that by construction (DG0) is then obviously satisfied.

Actually we will replace all the m 1’s in X by the string Y . Replacing additionally the
M − m 0’s by blocks 0M we obtain X

(2)
k2

independent of k2, and hence we will denote it

by X(2).
The definition of Y

(2)
k2

is slightly more involved. We first restrict ourselves to the case
k1 = 0 and define:

Y
(2)

0k2
:= σMs([σ k2(X)0(m−2)M ] [σ k2(X)0(m−1)M ]m−1),

where s is given by

s :=
{

0 if 0 ≤ k2 ≤ m − 2,

1 if m − 1 ≤ k2 ≤ M − 1.

So the m 1’s in Y are replaced by shifted versions of X and 0’s by blocks 0M and finally an
additional shift over M positions is applied on the complete string if k2 is at least m − 1.

Example 1 Let M = 8 and m = 3. Then

X = 11100000 and Y = 10100100.

Writing O = 08 and s = 1{n:n≥2}(k2), we have for 0k2 ∈ A
(2)

X(2) = Y Y Y O O O O O

Y
(2)

0k2
= σ 8s(σ k2(X) O σk2(X) O O σk2(X) O O).

Suppose that X(2) and Y
(2)

0k2
satisfy the DGC. Then it is easy to construct sets X(2) and Y

(2)
k1k2

satisfying requirements (DG1) and (DG2) for other values of k1. First observe that all shifted
versions of X(2) and Y

(2)

0k2
still satisfy (DG1). Furthermore we use the fact that

γ
(2)
k2

(
X(2), σ k1M

(
Y

(2)

0k2

)) = γ
(2)

0k2

(
X(2), Y

(2)

0k2

) ≥ 2,

γ
(2)

k2+1

(
X(2), σ k1M

(
Y

(2)

0k2

)) = γ
(2)

(0k2)+1

(
X(2), Y

(2)

0k2

) ≥ 2.

Now it follows that we can choose Y
(2)
k2

= σ k1M(Y
(2)

0k2
).

To complete the proof, it suffices to check that the sets X(2) and Y
(2)

0k2
satisfy require-

ments (DG1) and (DG2) of the DGC. Therefore, we consider the correlation coefficients
γ (2)

e2
(X(2), Y

(2)

0k2
) where e2 = e1e2 ∈ A

(2). We will focus first on the ‘coarse’ structure, i.e. on
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those correlation coefficients for which e2 = 0. Here we will always have a string σ k2(X)

in Y
(2)

0k2
coinciding with a string Y in X(2) for the same reason that we always have a coin-

cidence at level 1. This implies that we also always have a string σ k2(X) in Y
(2)

0k2
coinciding

with a zero string of length M in X(2) which is followed (cyclically) by a string Y .
It follows that if we will shift on the ‘fine’ level by varying e2, then in all cases we are

in the same situation of one σ k2(X) block ‘entering’ an Y block, and one σ k2(X) ‘leaving’
an Y block. Thus we get the same coincidences as in the case where σ k2(X) and Y are
compared cyclically, and therefore the second order correlation coefficients can be related
to the first order correlation coefficients γe(σ

k2(X),Y ):

γ (2)
e2

(
X(2), Y

(2)

0k2

) ≥ γe2(Y,σ k2(X)) ≥ 1 (13)

for all e2 = e1e2 ∈ A
(2). As we see, (DG1) holds for all e2 ∈ A

(2).
Now we turn to (DG2). If e2 = k2, then in (13) we even have by (11) that

γ (2)
e2

(
X(2), Y

(2)

0k2

) ≥ γe2(Y,σ k2(X)) = γ0(Y,X) = 2,

which means that

γ
(2)

0k2

(
X(2), Y

(2)

0k2

) ≥ 2. (14)

We still have to check that also γ
(2)

(0k2)+1(X
(2), Y

(2)

0k2
) ≥ 2. First we concentrate on the case

where both the first and the last Y -block in X(2) coincide with a σ k2(X) block in Y
(2)

0k2
. To

illustrate this in the terms of Example 1, we have:

X(2) = Y Y Y O O O O O

Y
(2)

0k2
= σ k2(X) O σk2(X) O O σk2(X) O O.

Keeping k1 fixed to zero and varying k2, the structure of coincidences we obtain will look
like:

YY : |1 0 1 0 0 1 0 0| 1 0 1 0 0 1 0 0| k2 ↓ s ↓
σ k2(X)σ k2(X) |1 1 1 0 0 0 0 0| 1 1 1 0 0 0 0 0| 0 0

|1 1 0 0 0 0 0 1| 1 1 0 0 0 0 0 0| 1 0
|0 0 0 0 0 0 1 1 |1 0 0 0 0 0 1 1| 2 1

|0 0 0 0 0 1 1 1 |0 0 0 0 0 1 1 1| 3 1
|0 0 0 0 1 1 1 0 |0 0 0 0 1 1 1 0| 4 1

|0 0 0 1 1 1 0 0 |0 0 0 1 1 1 0 0| 5 1
|0 0 1 1 1 0 0 0 |0 0 1 1 1 0 0 0| 6 1

|0 1 1 1 0 0 0 0 |0 1 1 1 0 0 0 0| 7 1

Each line in the table corresponds to a value of k2 and displays the string σ k2(X)σ k2(X).
This string is moved over k2 + 1 positions to the right, since we are interested in
γ

(2)

(0k2)+1(X
(2), Y

(2)

0k2
). Then, for each value of k2 the corresponding value of s (being either

0 or 1) is computed. If s = 1, then the string is moved over M = 8 positions back to the left.
By construction, the number of coincidences of YY with the k2-line in the table is a lower
bound for γ

(2)

(0k2)+1(X
(2), Y

(2)

0k2
). In each of the lines of the table, we have coincidences with

both bold ones in YY . Therefore,
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γ
(2)

(0k2)+1

(
X(2), Y

(2)

0k2

) ≥ 2.

Combining this with (14), we see that (DG2) holds. Adapting this argument for other values
of M and m is straightforward.

As we have seen in the proof of the previous lemma, it is possible to find sufficient inde-
pendent left and right triangles. Therefore, we have completed our proof that the distributed
growth condition is satisfied. We also already saw p > 1/

√
M implies that γ > 1, and hence

we can use Theorem 2 to finish the proof of Lemma 7. �

Theorem 3 For correlated fractal (m,M,p)-percolation we have

(1) If γ > 1 then F1 − F2 contains an interval a.s. on {F1 − F2 
= ∅}.
(2) If γ ≤ 1, then F1 − F2 contains no interval a.s.

Proof This result is the combination of Lemma 6, Lemma 7 and Proposition 1. In the latter
case we use that μ(∅) > 0 implies that μ is not entangled with itself, and that otherwise
m = √

M is for M ≥ 4 smaller or equal to M/2, and thus is also not entangled with itself. �

We remark here that since these results will also hold if we merely require that all sets
with m elements have positive probability to occur, the theorem will also be true in this more
general case.

6 The Lower Spectral Radius in the Symmetric Case

In this section we show that the distributed growth condition propagates to higher order
Cantor sets. As a consequence, the spectral radius characterization obtained in [2] can be
extended to joint survival distributions satisfying the DGC.

Lemma 8 (Propagation of the distributed growth condition to higher orders). Suppose the
pair of joint survival distributions (μ,λ) satisfies the DGC. Then for all n ≥ 1, the pair of
nth order joint survival distributions (μ(n), λ(n)) satisfies the DGC.

Proof Choose a string kn ∈ A
(n), which we write as kn = kk2 . . . kn, with k ∈ A and

k2 . . . kn ∈ A
(n−1). We check that we can find nth order sets satisfying the DGC for this kn.

Since the pair (μ,λ) satisfies the DGC, there exist first order sets Xk,Yk ⊆ A satisfying
(DG0), (DG1) and (DG2). Define

X
(n)
k := {ln = l1 . . . ln ∈ A

(n) : lj ∈ Xk for all j = 1, . . . , n},
Y

(n)
k := {ln = l1 . . . ln ∈ A

(n) : lj ∈ Yk for all j = 1, . . . , n}.

Obviously, μ(n)(X
(n)
k ) > 0 and λ(n)(Y

(n)
k ) > 0. Define a new pair of nth order joint survival

distributions by μ
(n)
k (X

(n)
k ) = λ

(n)
k (Y

(n)
k ) = 1. Also define a first order deterministic pair of

joint survival distributions by μk(Xk) = λk(Yk) = 1. The expectation matrices belonging to
these nth order survival distributions are related to those belonging to the first order survival
distributions by

M(n)
k (kn) = Mk(kn) = Mk(k)Mk(k2) . . . Mk(kn).
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Using that Xk and Yk satisfy (DG1) and (DG2), and that the columns sums of the expectation
matrices are equal to the correlation coefficients, we obtain that

[1 1]M(n)
k (kn) = [1 1]Mk(k)

n∏
j=2

Mk(kj ) ≥ [2 2]
n∏

j=2

Mk(kj ) ≥ [2 2]

elementwise, which means that Z
(n);L
k (kn) ≥ 2 and Z

(n);R
k (kn) ≥ 2, or equivalently

γkn

(
X

(n)
k , Y

(n)
k

) ≥ 2; γkn+1

(
X

(n)
k , Y

(n)
k

) ≥ 2.

Similarly γln
(X

(n)
k , Y

(n)
k ) ≥ 1 for all ln ∈ A

(n). It follows that the pair (μ(n), λ(n)) satisfies the
DGC. �

This propagation property leads to the theorem below. The lower spectral radius ρ(�) of
a set � of square matrices is defined by

ρ(�) := lim inf
n→∞ min

A1,...,An∈�
‖A1 . . .An‖1/n,

for some matrix norm ‖·‖. For two M-adic random Cantor sets, let �M be the corresponding
collection of expectation matrices

�M := {M(0), . . . , M(M − 1)} . (15)

Then we obtain the following result:

Theorem 4 Consider the algebraic difference F1 − F2 between two M-adic independent
random Cantor sets F1 and F2 with the same joint survival distribution satisfying the dis-
tributed growth condition.

(1) If ρ(�M) > 1, then F1 − F2 contains no interval a.s. on {F1 − F2 
= ∅}.
(2) If ρ(�M) < 1, then F1 − F2 contains no interval a.s.

Proof The proof is basically the same as the proof of Theorem 6.1 in [2]. There is a dif-
ference in the fact that here we do not require irreducibility explicitly. From the symmetry
μ = λ it follows that me = m−e for all e ∈ A ∪ −A. Now, since the DGC holds, we get the
irreducibility for free.

After derivation of the same statements concerning the nth order correlation coefficients
as in [2], we apply our Theorem 2. This is justified by the fact that the DGC propagates to
higher orders, as was shown in Lemma 8. �
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